Fluorescent protein‐mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments
نویسندگان
چکیده
The genomic framework that enables corals to adjust to unfavourable conditions is crucial for coral reef survival in a rapidly changing climate. We have explored the striking intraspecific variability in the expression of coral pigments from the green fluorescent protein (GFP) family to elucidate the genomic basis for the plasticity of stress responses among reef corals. We show that multicopy genes can greatly increase the dynamic range over which corals can modulate transcript levels in response to the light environment. Using the red fluorescent protein amilFP597 in the coral Acropora millepora as a model, we demonstrate that its expression increases with light intensity, but both the minimal and maximal gene transcript levels vary markedly among colour morphs. The pigment concentration in the tissue of different morphs is strongly correlated with the number of gene copies with a particular promoter type. These findings indicate that colour polymorphism in reef corals can be caused by the environmentally regulated expression of multicopy genes. High-level expression of amilFP597 is correlated with reduced photodamage of zooxanthellae under acute light stress, supporting a photoprotective function of this pigment. The cluster of light-regulated pigment genes can enable corals to invest either in expensive high-level pigmentation, offering benefits under light stress, or to rely on low tissue pigment concentrations and use the conserved resources for other purposes, which is preferable in less light-exposed environments. The genomic framework described here allows corals to pursue different strategies to succeed in habitats with highly variable light stress levels. In summary, our results suggest that the intraspecific plasticity of reef corals' stress responses is larger than previously thought.
منابع مشابه
Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments
The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is funda...
متن کاملSpectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50-60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths ...
متن کاملTrade-Offs Associated with Photoprotective Green Fluorescent Protein Expression as Potential Drivers of Balancing Selection for Color Polymorphism in Reef Corals
Citation: Quick C, D’Angelo C and Wiedenmann J (2018) Trade-Offs Associated with Photoprotective Green Fluorescent Protein Expression as Potential Drivers of Balancing Selection for Color Polymorphism in Reef Corals. Front. Mar. Sci. 5:11. doi: 10.3389/fmars.2018.00011 Trade-Offs Associated with Photoprotective Green Fluorescent Protein Expression as Potential Drivers of Balancing Selection for...
متن کاملAcclimatization Potential of Dracaena Sanderiana ‘Victory’ to Contrasting Light Environments
The present study was conducted to ascertain the ability of Dracaena sanderiana ‘Victory’, a foliage plant species of commercial importance in both domestic and international markets, to thrive under contrasting light environments. The experiment was carried out inside a semi-open greenhouse in Peradeniya, Sri Lanka. Same sized and same aged, ready-to-ship export quality plugs of Dracaena sande...
متن کاملMultilocus Adaptation Associated with Heat Resistance in Reef-Building Corals
The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleachin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2015